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In this work there is giwven an approximate solution of the problem
of a two-dimensional steady supersonic stream of ideal gas, neglecting
heat conduction, flowing around g thin wing with sherp edges at small
aengles of attack. (Determination of the law of distribution of pressure
along the wing, lifting force and head resistance of the wing.)

PART T

The problem of the investigation of the mechanicsel action of a
moving gas on aen immoveble wing appears as a specisl case of the some-
what more general problem of the investigation of the mechanical action
of a moving gas on en lmmovable fixed wall constraining the motion of
the gas. In our own explanastion we begin with the formulation of this
last problem in which we confine ourselves only to the consideration of
the steady two-dimensional forces of ideal gases not subject to the action
of gravitational forces. In the plane of motion of the gas we shall
arrange an lmmovable rectangulsr coordinate system in such a manner that
1t is situated as in figure 1. We Introduce three functions v, p, and p
of the independent variables x and y defined, respectively, as the wveloc-
ity, density, end pressure. The vector functions ¥V will be determined by
a pair of scalar functions of the independent variables. For these func-
tions we shall agree to take either the functions vy, vy defined as the

projections of the velocity of the axis x and ¥, respectively, or the
functions v and B, defined, respectively, as the sbsolute value of the
velocity and its angle with respect to the positive direction of the x-axis,
measured in the counterclockwise sense. In what follows we limit ourselves
to the consideration only of flows for which the function B satisfies the
condition

x x
-Z<p<i (1)

*Tzvestila-Akedemia, NAUK, USSR, 1939, pp 603-626.
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As 1s well known, the study of the gas motion under consideration

leads to the investigation of the followlng system of differentlal .
eguations
3\
ov. ov.
Vx + Vy x, 1 ég =0
ox oy p Ox

o) |, Aewy) _
dx oy .

o/p o/ p
Vy —f =\ + =\ =0
* ax(pk) Y oy pk) J

Here Xk 1is the adiabatic exponent (for air k = 1.405). If the motion
of the gas 18 constrained by an immovable frictionless fixed wall in the
plane X0Y, the ges will be adjacent to it along some curve. We shall
call this curve the "contour X."

-5 .
Coneider the wnit vector t tangent to the contour K directed in
such a manner that its proJjection on the x-axls is positive. Denote
by PBx the angle which it makes with the x-axis. Clearly By may be

regarded as a function of EH? abscissa x of that point of the contour K
assoclated with the vector t. We denote this function by Bk(x) and
assume that it is continuous. If the function B(x) is prescribed and,

moreover, the coordinates of any point of the contour K are glven, the
form and position of the contuur is completely determined. We agree to
take as origin the left edge of the contour K. Then the equation of
this contour will have the form '

X
y = fo tah prlx)ax (3)
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We can write this equation more briefly if we designate ite right-hand
side by y(x)

y= Yk(x) (1)

Since in the flows under consideration the direction of the wvelocity on
the contour K must coincide with the vector ¥, the condition on the flow
along an immovable fixed frictionless well may be written in the following
fashion

B = Br(x) (5)

at y = yx(x). The condition (5) must be added to the system of equa-

tions (2) as a qualifying boundary condition. Much work has been dedicated
to the investigation of solutions of the system (2) subject to the con-
dition (5). Of these we are interested here only in those in which the
flow is supersonic, i.e., flows at every point of which the following
condition

v > a (6)

is satisfied, where a is the local speed of sound

=\ fx 2
a=\/k 5 (7N

The investigations contained in these works divide in two fundamental
directions. The first direction is represented in works in which solu-
tions of the problem are achieved with the help of numerical or graphical
processes permitting the step-by-step calculation of & system of parti-
cular values of the desired functions. (Works of Busemann, Kibelia,
end Frankl.) The fundamental achievements of the methods represented by
these works consist of the fact that by their use many actusl practical
problems may be solved quantitatively of which the solution by other
methods would present great difficulties. In particular these methods
solve thoroughly corner-nonpotential problems. The chief defect of
these methods is that the solutions obtained asre numerical so that it
is impossible to obtain a general qualitative estimate of the phenomena
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under investigation. The second direction is represented by the works

of Meyer, Ackeret, Prandtl, and Busemann, which are confined to a culti-
vation of an exact theory of irrotationasl flows. The results are based
on the fact that in the case where vorticity is absent the character-
istic system of differential equations (2) admit of integrable combina-
tionsg. This theory leads to series of spproximste results of any desired
accuracy, giving a complete qualitetive and quantitative picture of the
flow. Since our investigation is mostly connected with the theory of
irrotationsl flows we give below a brief introduction to the fundamental
methods and results of this theory.

We introduce the stream function ¥ defined by the following relations

oy _
x O
\ (8)
N .
oy *
J

As 1is well known from equations (2), (7), end (8) the following relations
follow without difficulty

p
2. (9)
pk-
2 >
e 2=ty (10)
2 k-1

Where 8, t; denote quantitles which display the flow once and for all

as a function only of . With the help of equatlions (2), (9), and (10)
‘it is easy to obtain the two equations

— . == ] (11)

<
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ov.
(a2 - vka)———-+ (a2 - vy2)——x-- VgVyl —L + —=) = 0 (12)
ox dy
where Q denotes a quantity defined as
dat 2

"l TR - 1D ay

Equations (11) and (12) represent linear relationships between the first
partial derivatiyes of the functions vy, Vy with respect to x and y.

Since every flow under consideration is supersonic, the entire region
of the flow may be covered by a pair of families of characteristics. The
differential equations of these characteristics are obtained easily by
the use of equations (11) and (12). For one family of characteristics,
which we shall asgree to call the first family, we obtain the equations

dy = mdx (14)

(a2 - v2cosze)m1 + v2sin B cos B 4 (15)

d(v cos B) + mod(v sin B) =
v2cos2p - al

and for the other, which we shall agree to call the second family, we
have the equations :

dy = mpodx (16)

(a2 - v2cos28)my + v2sin B cos B

d(v cos B) + myd(v sin B) = dx (17)

v2cos2p - a?

Here mp, mo denote the following expressions

-vesin Bacos B + a\/v2 - 82 | (18)
8

- vzcosaﬁ

ml=
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G

~v2sin B cos B - al/v2 - a2
m2 = ) ) (19)

82 - vecosea

We now consider a supersonic stream with constant hydrodynamical
elements (i.e., functions v, B, p, D, &). We shall call this flow the
undisturbed flow. The values of the functions v, p, p, a in the undis-
turbed streem will be denoted by w, pg; Py, &g respectively, and

the ratio w/ag by M. Since the stream under consideration is super-

sonic, M > 1. We shall choose the directlon of the velocity of the
undisturbed stream to correspond to the direction of the x-axis.

We assume that the undisturbed stream strikeés an immovable, fixed,
frictionless wall (contour K), inclined in such a manner that in flowlng
around thils wall the stream never detaches from it and-remeins super-
sonlc everywhere. We mdy distinguish two cases of flows of this type.

Case I.- The contour K ls situated in such a2 manner that the
condition

Bx(0) ¢ © (20)

is fulfilled. In this case, as is well known, there appears a curve of
weak discontinuity 0C (figs. 2(a), and 2(b)) proceeding from the origin
and dividing the entire flow in two parts. On one side of the curve of
weak discontinuity OC extends the region containing the undisturbed
stream and on the other the region of flow around the wall. In the region
of flow around the fixed frictionless wall the hydrodynamical. elements of
the stream, generally spesking, are not constant but vary. In what fol-
lows we shall call this part of the stream the disturbed stream. In the
entire region of the flow under consideration the functions v, B, p, P, A
are continuous but their partial derivatives with respeet to x and ¥y
(all or only some) exhibit Jjump discontinulties, at least on the curve of
weegk discontinuity OC. The same curve OC appears 'as & characterlistic of
the second family since the hydrodynemicel elements of the stream are con-
stant. On this line the following relationships will hold in the entire

region contalning the stream

> 2
L _ (21)
2 k-1

)
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6 = 8o (22)

where 6p denotes a quantity defined as

80 = — (23)

4 =0 (24)

i.e., the flow under consideration is irrotational. By virtue of rela-
tion (24) the right-hand side of equations (15) and (17) vanish and these
equations can be integrated. As a result of integration of equation (15)
we obtain the relationship

B + 9(v) = constant : (25)

satisfled along any characteristic of the first famlly, and as a result
of integrating equation (17) we have

B - o(v) = constant (26)

satisfied along a charscteristic of the second family. o(v) denotes a
function defined as

- ” 2 _ g2 2 _ g2
cp(v):l/iz-l-iarc tan‘/i ?L- v 8% . arc ta.ny—:—az(ﬂ)
- -+ a

Since on the curve of weak discontinuity OC the quantities v and g have
the values w and O, respectively, the following relation 1s satisfied
along every characteristic of the first famlly intersecting this line
and consequently in the entire region of the disturbed stream:
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B+ (v) = o(w) (28)

From equations 16, 26, and 28 it immediately follows that the char-
acteristics of the second family (the curve OC being emong these) are
straight llines since along each of these characteristics the hydrodynam-
ical elements are constant. '

Making use of these circumstances it is not difficult with the aild
of equations 28, 26, 22, 21, 16, 10, T, and 5 to construct expressions
for the functions v, B, p, P, & in the region of the disturbed flow.
However, the construction of these expressions 1s not of great interest
since our chief interest 1s centered on the construction of an expres-
sion for the pressure on the contour K which may be accomplished wilithout
the use of these expressions for the hydrodynamical elements of the flow.
Actually equation 28 allows us to determine the velocity v as a function
of the angle of inclination of this velocity wlith the x-axis at every .
point of the region filled by the dilsturbed flow. Since by wvirtue of
equation 5 the angle of inclination of the veloclty with respect to the
x-axls is a given function of x on the contour K there i1s the possibility .
of using equsations 22, 21, 10, 9, and T to determine the pressure p as a
function of - x on the flow around a contour. If we limit ourselves to
the consideration of slightly disturbed flows, i.e., flows whose hydro-
dynemical elements differ but little from the hydrodynamical elements of
the undisturbed flow, the expression for the pressure on the flow around
a contour K may be written in the form of a series. Thls serles has the

form

P=Dpo+ Q[%lﬁk(x) + apPy2(x) + a5Bk3(x) + ahﬁku(x) .o .:] (29)
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where
q = DOWE _ POkM2

2 2

ay = 2(M2 - 1) -1/2

ap = (M2 - 1)‘2<2 - o2 +-5—;—1M4)

- 5 - 2
a3 = (M2 - 1)7/2%-2‘42+§-(k+1)ml*+ 2 7]2"'21‘ M6+k'é'lM8

ay = (M2 - l)'5<-;-- -§-M2 + L__i*'él k4 4 =21 - 1?1; + 18k2 6 |

15 + 20k - 8k2 + 3k5 M8 + -21 - 20k + 3k2 + 2k M0 4 3 4+ 2k - k2 M12>
12 48 48

Case IT.- The flow eround a contour K is situated in such a manner
that the following inequality is satisfied

Bx(0) > 0 (30)

In this case, as is well known, a line of shock discontinuity OD appears
(fig. 3) proceeding from the origin O and dividing the entire flow under
consideration in two parts. On one side of this line is the region of
the undisturbed stream and on the other the region in which the fluid
flows around the fixed frictionless wall. Just as in case I we call the
flow in the region in which the stream asround the fixed frictionless wall
is accomplished the disturbed flow. In the present case, in contrast to
case I, the functions v, B, p, p, & exhibit Jjump discontinulties on the
shock-line OD.
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In the reglon of the disturbed flow these functions must satisfy
not only equations 2, 5, and 7 but also the dynamicel conditlions across

the shock line.
conditions may be written 1in the following form

2 _ w2 %°

k-1 2 k-1

+

|

= w(l + b3p + bop2 + bzp> + bwlL

where

Considering the flow to be only slightly disturbed, these

(31)

+ .. .) (32)

L Ly B -yt Ko -1k 5,6 (k+1)% 8
6 2 Y 2 32

by = -(2 - 1>-5(§£+ Sy, ALrkyh, o

5+ 5k - kK2 + k5 8 -5 -k - 3k2 + 35
16 48

%=1+z3g3+243“+._ .

-27k+12k2Ms+
24

2

« e & e e @

(33)
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where
k(k2 - 1) W6 (12 -2
1y = ]f-(i‘-a—'iL-)-né(ME - 1)‘3[h +2(k - 2)M® - (k - 1)M”]
12
%:eo+elﬁ+e2{32+... (34)
where
- i
eg = (M2 -1) 2
el - k+ 1 M,'l'(ME _ l)—2

Condition 31 shows that, disregaerding the presence of Jump discon-
tinuities in the functions v, B, p, P, &, equation 21, just as in case I,
is valid throughout the entire region filled by the flow under considers-
tion. However, condition 22 is not, generally speaking, fulfilled in
the case now under consideration. However, there is the possibility of
speaking of satisfying this conditlon approximately. In fact, consider
equation 33. Its right-hand side does not contain terms in the first
and second powers of B. Therefore, for slightly disturbed flows, equa-
tion 22 mey be. regarded as approximstely satisfied on the line OD and con-
sequently throughout the entire region filled by the flow under consildera-
tion. From this it follows thet in the region of disturbed flow equa-
tion 24 may be regarded as approximately satisfied, which means that
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equations 25 and 26 hold on characteristics. For values of B and v
near O eand w, respectively, equation 28 msy be written in the form
of a series

v=w(l+by'B + bZ'B2 + b3's5 + bu'ﬁh + .. o) (35)
where
-1
by'=-(M2 - 1) 2=
o R e - -
by' = (M2 - 1) (2+ n M’*) bo
ST 3 2k% - Bk + 3
b’ = -2 - 1)7 Z|= + T M2 4 2k - 1Mt + = 2 Mé
6 2 4 12
2
by ' = SR - DI 22 AT 2 2k 5 - A9k ¥ 16T 46
24 8 24 24

2 2
3 . 2k - 5k +1+k3M8+-3+8k-7k +2k5M10)
32 96 '

¢ e o o 8 e e = e & e 9 e s e B = o = s =

Comparing equations 32 and 35 we see that for slightly disturbed
streams the filrst msy be substituted for the second with good approxi-
mation. Consequently, for slightly disturbed flows, equation 28 will be
epproximately satisfied along the line OD. Since, on the other hand,
along each characteristic of the first femlly equation 25 1s approximastely
satisfied, equation 28 will be approximstely satisfied throughout the
entire region of disturbed flow. The approximate expressions for the
functions v, B, p, D, & are constituted exactly like the accurate expres-
sions for these functions in case I. Substituting the approximate expres-
sion for the function B in the right-hand side of equation 34, we obtain
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a differential equatlon of the first degree for the approximaste deter-
mination of the form of the shock line. Summing up our considerations

we can deduce that the accurate results contained in case I can serve as
approximate results for case II, and further that expression 29 can serve
as an approximaste expression for the pressure on the flow around a contour
in case II. These same considerations show that there is no sense in cal-
culating all terms in this expression. It is sufficient to limit ocurselves
to the first two or three terms.

From all that has been said about cases I and II one may conclude
that the form of the contour K may be made up in such a manner that art-
fully constructed shocks may be caused to appear in the reglion of flow
around the fixed frictionless wall. In such cases when we pay attention
to this phenomenon, the results we have obtalned are valid, not for the
entire region of flow around the fixed frictlonless wall, but only for
that part in the neighborhood of the front side of the flow around a
contour. The fundamental problem of the present work is the construction
of approximate expressions for the pressure on the flow around a contour
in case II, with the calculation of the circulation of the flow occasioned
by the presence of the shock discontinuity Ob. In spite of the fact that
in the case of the presence of circulation it is impossible to integrate
equations 15 and 17, there is the possibility, however, of making up such
combinations of differentisls from equations 14, 15, 16, and 17, adding
to these equations expressions for differentials of the stream function,
that with the aid of these combinations it is possible to construect expres-
sions which we shell integrate. Investigations concerning the preceding
construction constitute the contents of the following section.

PART ITI

Suppose we have a flow corresponding to case II of the preceeding
section. Assume that in this flow the hydrodynemical elements in the
region of the disturbed stream differ infinitely little from the hydro-
dynamical elements in the region of the undisturbed flow. We revamp
somewhat our notion of the region of disturbed flow. Shortly before we
agreed to apply this name to the region bounded by the curvelinear
triangle made up of the curve 0Cp (contour K), the shock line 0Cj, end

the characteristic of the first family C;Co emerging from the lowest

point of the contour K (fig. 4). Teking into consideration equations 5,
14, 18, and 34, it is not difficult to conclude that with the assumptions
made just now relstive to the hydrodynamical elements the curvelinear
triangle 0C1Cp differs infinitely little from the isoceles straight-line

triangle 0'Cy'Co' (fig. 5) where the equal sides 0'Cy' and C;'Cp' are
parallel to characteristics of the second and first families in the
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undisturbed flow. As for the functions 5k(x), B, Vv, p, P, & We assume

that they all have the properties of differentiaebility and continulty to
&3 many degrees as may be necessary to Ilnsure legitimacy of operations
which are performed upon them. Moreover, we assume that in the flow
under consideration the infinitesimal quentities By(x), By '(x), By (%),

B, v-w, p - Po» P - Pys & - &, have the same order of megnitude.

Teking this last group of infinitesimals as fundamental (having unit
order of magnitude) we shall agree in what follows to adhere to the fol-
lowing system of notetions appearing in Investlgations involving infinitely
small quantities. By em (m being any positive integer) let us denote

an infinitesimsl whose order of megnitude is not less than m. Clearly
such a mode of notation does not exclude the possibility of séveral dif-
ferent infinitesimals being denoted by the same symbol, and, vice versa.
The same infinitesimal may be denoted by several different symbols. Thus,
for example, 1f an infinitesimal o 1is denoted by €}, the infinites-

imel 2o may alsc be denoted by €}, and, moreover, the infinitesi-
mals o and 20 may be denoted by €35 €n5 €7-

On an arbitrary characteristic of the second or firet family the
equation

dy = pv(sin pdx - cos Bdy) (36)

will be satisfied by virtue of equation 8 throughout the entire region
filled by the flow. ZEliminaeting dx end dy from equations 1k, 15,
and 36 and teking into account formulass 13 and 21, we arrive at the
equation

d(v cos B) + mpd(v sin B) = ¢;d 1n @ (37)

which 1s satisfied on any cheracteristic of the first famlly. Here ¢l
denotes the quantity

a2 |v2sin g cos B - (v2cos?p - az)nﬁ]

0y = — (39
k(k - 1)v(v2cos2p - &2)(m; cos B - sin )




NACA T 139% 15

On the other hand, having the integrel 25 of the equation

d(v cos B) + mod(v sin B) = O (39)

it is easy to find an integrating factor Ly of this equation, such that
after multiplying by In it msy be written in the form

dﬁs + cp(v)] =0 . (ko)
In order to determine I, we have the obvious relationship
Lll:d(v cos B) + mpd(v sin ﬁ)] = d[ﬂ + cp(v)] (%1)
from which we obtain without difficulty
Li(mp cos B - sin B)vdp = 4P (42)

consequently

L = = (43)
v(mp cos B - sin B)

If now we multiply both sides of equation 37 by I, this equation takes
the form

d[g + qa(v)] = Hid 1n 6 (44)
where Hj denotes the quantity

g (v2cos2p - a2)my - vesin B cos B
l =
k(k - 1)v2

(45)
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We denote by Hyp the value of H; at v =w, B =0. We have

L e - Y2 (46)

Hon = e
107 ¥(x - 1)M2

Equation L4k may be rearranged in the following fashion

d[B + cp(v):] = Hjgd In = + (H; - Hip)d 1n = (47)
% %

Now choose an arbitrary polnt S in the reglon of disturbed flow and lead

& characteristic of the first family through it. We denote the point of

intersection of this characteristic with the shock line by A (fig. 6).

Integrating both sides of equation 47 along the above characteristic from
point A to polnt S we obtain

2] e e
Bs + @(vs) - Bg - o(va) = H10<%n EE - 1n §E> + \/ﬁ (H1 - H10)d 1n o
(o] 0 AS 6;

(48)
where B4, Vg, 6g denote, respectively, the values of B, v, 6 at

the point S and By, Vg, 05 denote the values of these quantitles at
the point A. Taking asccount of equation (32) we have

vg = (1 + bipg + boBa? + bzBad + byst + . . L)
(49)

We introduce the gquantity vg; defined with the help of the expansion 35
in the following fashion

val = W(L + b1Bg + boBa® + b3'Bgd + by'Bat + . . .)  (cf eq. (35) -Tr.)
(50)
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By this definition of the quantity vgy we have

Ba + P(Va1) = (W) (51)

With the help of formulas 49, 50, and 51 we rearrange the expression
Bg + 9®(vg) in the following manner

Ba + 9(vg1) + 9(vy) - @(vay)

1

Ba + @(vg)

o(w) + 9(va) - 9(val)

o(w) + o' (w) [(va -w) - (Vg - w):l +

-]22cp'"(w) [(va - w)2 - (vay - w)a:] oo .
= 9(0) + W' () [(b5 - b3")pa” + (b - by")Ra"| +
w2p" (w)by (b3 - b3')Ba" + €5 (52)
Calculating @'(w), o¢"(w) we obtain
V) = -
@' (w) — (53)

(5k)

9" (w) =

by 2
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Using formulas 52, 53, and 54 we easily find

2bo

Ba + 9(va) = O(w) - (b3 - b3')ad +
by 2

(b3 - bs') - (b}, - by")| B + €5
by by

(55)

Now pass a stream line through the point S and denote by P the point of
intersection of this line with the shock line. Since the stream funetion C
is constant along this line we have

8g = 86 (56)

P

where Op denotes the value of 6 at the point p. Taking logarithms of
both sides of equation (33) we obtain

e .
in 55-: Z3ﬂ5 + 24'54 + 25'35 R (57)
Since the values of the coefficients 1y', 15', . « « will not be needed

in what follows, we shall not calculate them.

Using formulass (56) and (57) we easily see that

e 2]
- EE - An EE'= Z3(13p5 - Ba?) + 1k'(5ph - Bat) + €5 (58)
0 0

where ﬁp denotes the value of B at the point p. Assuming that the

mean value theorem is applicable to the integral arising from the right-
hand side of equation (48), we easily findl

lInstead, teke a slightly more general assumption admitting the part
AS of the characteristic under consideration to be divided in the same
finite number of parts in such manner that on each part the mean value
theorem can be applied to the integral under investigation.
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J[ (B - H10)d 1n == 13(F; - Hio)(Bp? - B3 + e  (59)
AS %o

(In consequence of this equation one must keep in mind thatb ﬁi - Hig = el).
Here H; denotes the value of Hy &bt some point on the characteristic
under consideration between the points A and S.

Using relations (55), (58), and (59) we write equation (48) in the
following form

2bs

b2

1 l 1 Ll.
bz ~ b ~ —(by - b +
l (b3 5') bl( Iy L')|Ba

Bs + ¢(vg) = o(w) - ;l-(bj - b3')g> +
1

H:LOZ'B(BP'3 - BaB) + Hloz’-i-'(BpL,- - Bah') +

15(H - Hio) (Bp - Bad) + €5 (60)

We denote by B the intersection of the characteristic of the first
family under consideration with the contour K. Applying formuls (60) to
the point B (which is possible, since the point S was chosen arbitrarily)

we obtain

N L 1 3 EEE 1 j; ! 4
Bp + @(vy) = plw) - EI(b3 - bz )Ba” + blz(b3 - bz') - bl(bu - by')| Ba" +

Hipl3(Bo” - Ba) + Holy' (Bo* - Bg™) +

15(f - H1p) (B? - Ba”) + €5 (61)
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where B, Vp denote, respectively, the values of B and v at the
point B and Bpo denotes the value of B at the point O.

We now proceed to the derivation of an expression for Bg,. From
formula (60) we have

Bg + 0(vg) = 0(w) + e5 (62)

From equetion (62), using formula (35) we obtain

vg = w(l + biBs + boBs?) + €3 " (63)

end denoting by my, the value of m, at the point S we obtain, by
using formulaes (19) end (63)

~-1/2 -
mog = 2 - Y2 LKL b )2 o

eo + 28185 + €o (64)

Analagous to the derivation of equation (47), which holds on character-
istics of the flrst family, we may derive equation

alp - o(v)] = Hpd 1n o+ (B2 - Ep)d1n & (65)

vhich is valid on characteristics of the second femily. Here Hs denotes
the function defined as

_ (vecos2p - al)m, - vesin P cos B (66)

H, =
k(k - 1)ve

and Hpy denotes the value of thils function at =0, v=w.
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Now pass & characteristic of the second family through the point S
and denote by Q 1its intersection with the contour K. Integrating both
sides of equation (65) along thls characteristic from the point @ to the
point S we obtain

8
f (H2 - Hpp)d 1n§6

80 8o QS

0
Bs - Bq -EP(V's) - cp(vqﬂ = H20<ln % _ 1 _‘l> +
(67)

where Bq, Vg» eq denote respective the values of B, v, 6 at the

polnt Q. Since the contour K is a stream line we have

6 = 8(0) (68)

where G(O) denotes the value bf 6 at the point 0. Assuming that the
rmean value theorem can be gpplied to the integral arising from the right-
hand side of equation (67) we easily find, with the aid of formulas (56),
(57), and (68)

B - Bq - |2() - 0(v)] = & (69)
Applying forrmula (62) at the point Q we have
Bg +9(vg) = 9(W) + 3 (70)

Eliminating o(w) from equations (62) and (70) we arrive at the fol-
lowing equation '

Bg - Bq+ cp(vs) - CP('V'q) =-€3 (71)
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Families (69) and (71) give
Bs = Bq + 65 (72)

On the shock line we take an arbitrary point F (fig. 7) and pass
through it a characteristic of the second family in the region of the
disturbed flow and we denote by By, mnmop, respectively, the values B

and mo at the point F. Applying formulas (64) at the point F we obtain

mof = eg + Eelﬁf + €p (75)

We denote by (g%) the slope of the tangent to the shock line at the
- f

point F. From equations (34) we have

= eg + elﬁf-ﬂs+ €2 (T4)
T

&

Comparing forrmlas (73) and (T4) we see that the characteristic of the
second family paessing through T and the shock line at thils inter’section
moke an infinitesimal angle with each other moreover, 1f

B > O (75)

the slope of the characteristic of the second family Is greater than the
slope of the shock line at the point F.2

21t ls easy to show that 1f the shock line is unbroken and moreover
condltion (30) is setilsfied the inequality B < 0 is impossible on this
line. As a matter of fact, in the opposite case the shock line is broken
s3ince with B < O condition (34) must be replaced by the following con-
dition in virtue of Tsemplen's theorem

%:-(eo-elp+eg32—- . )
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Denoting by 1 the intersection of the characteristic of the second
family under consideration with the contour X and by Xq ebscissa of this

point, we have
XZ = el _ (76)

Let B3 denote the velue of B at the point L. Using equations (5)
and (76) and MacLauren's formula we obtain

By = Br(0) + By ' (0)xy + e3 (17)
Applying formula (72) at the point F we obtain
Be = By + €3 - (18)
As a consequence of equations (77) and (78)
Br = Byx(0) + By'(O)xy + €3 (79)

Since the point F was chosen arbitrarily on the shock line by use of
equations (T4), (76), and (T79) we can obtain the following differential
equation for the shock line

= ep + elBk(O) + ep (80)

fl&

Consequently the equation of the shock line may be written in the fol-
lowing form

vy = [éo + elﬁk(oilx + €p (81)
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Applying forrulas (64) and (72) to an arbitrary point situated on the
characteristic of the second famlly FL we easily obtaln the differential
equation of this line from the followlng form

dy
_=e0+2eB + € (8‘2)
ax 1P 2 }

Employing formulas (76) and (77) this equation may be written

S)—y{: = &g + EelBk(O) + €o (83)

Consequently the equation of the characteristic FL msy be written in the
form

y =¥y + [eo + 2228(0)| (x - 3) + e (8)
where y,; denotes the ordinate of the point L.

On the other hand, teking account of formulas (3) and (76) we have

X
1
¥ = fo ten B (x)ax = e, (85)

Employing formulas (85) and (76) we may write equation (84) in the form

y = l:eo + 2€lBk(O)JX - epoX71 + €9 (86)

Applying forrmles (81) and (86) at the point F and denoting by xfr, ¥¢
the coordinates of this polnt we obtailn
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3
Ye = [eo + elBk(O):'Xf + €s
> (81
Ve = [eo + 2elBk(O)fo - egXy + €
J
From equstion (87) we easily obtain
€1
Xy = — Xka(O) + €p (88)
€0

Replacing x; in the right-hand side of equation (79) by the expression
in formuls (88) we obtain

Be = B1(0) + L x8, (0)By" (0) + e5 (89)
€0

We denote by x5, yg the coordinates of the point A and by xy, ¥p

the coordinates of the point B. Applying formula (89) at the point A
we arrive at the following result

B = Bx(0) + == xo8(0)BK' (0) + €3 (0)
0]

We now express Xg 1n terms of x,. To this end, using formulaes (1)

and (18), we write the differential equation for characteristics of ‘the
second family in the following fashion

= -eqg + Gl (91)
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Employing formula (91) we write the equation for the characteristic AB
of the first family in the form

Y= - eox - xp) + € (92)

Taking account of formula (3) we have

*p
3 = fo tan B(x)dx = €] (93)
consequently equation (92) may be written
Y= -eo(x - .Xb) + El (9}'1')

On the other hand, equation (8l) for the shock line may be written in
the form : ’ .

y=6ex+¢€ (95)

and applying formulas (94) and (95) at the point A we obtain

Ya = =eo(xg - xp) + €1

(96)

il

Ya = egXg + €7

From equation (96) we easily find

X,
Xg = Eb‘ + € (97)
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And consequently

e
Ba = Bi(0) + == xpByc(0)By" (0) + 5 (98)
2eo . .

Substituting this expression for B, in the right-hand side of equa-
tion (61l) and substituting Bp for B (0) in the fundamental formula (5)
we obtain

By + 0(vp) = ©(W) - (b3 - bz")p,3(0) -

by

2b

2oy - by') - —=(b5 - b3')|By*(0) -

by b, 2

3e, jbx - bz’

1i°3 3 3 1

Hyol 0 0

aeol: oy + Hyipo %}Xbﬁk (0)py ' (0) + €5 (99)

Employing relation (35), we easily obtain from equation (99)

Vp = W {l + bify + bgﬁb2 + b5’Bb3 + bll_‘ﬁblP + (b5 - bBX)ﬁk:(o) +

2b 2b
[%u - by' - gzg(bB - b5'{}BkF(O) + Elg<b5 - b3')B, 2 (0)Bp, +

Jeqt: ]
-26—2)- b3 - b3' + H107'3b]]Xka5(o)Bk'(o)J + €5 (100)
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Substituting wvp, Bp, Xp for v, Br(x) and x, respectively, in

formula (100) we arrive at the following final expression for the velocity
on the contour K:

V=Wl + biBy(x) + bgﬁke(x) + bj'Bka(X) + bu'ﬁkh(x) + (b5 - b3')ﬁk3(0) +
b 2 '
{bh - by' - —Eé(b3 - bj'{}ﬁkh(o) + _Ei(bj - b3')3k3(0)ﬁk(x) +

3eq

. ) ' . 3 ' ]
280Lb3 b3 + E107,5b3;]xﬁk (O)Bk (0) + €5 (lDl)

We now proceed to the derlvation of formulas from which the pressure
on the contour K can be calculated. Clearly

80° = k — (102)
and noreover, on the contour K the followlng equation holds

0
;_PE= e( ) (105)

Employing formulas (7), (10), (21), (23), (102), and (103) we easily obtain
the followlng expression for the pressure on the contour K

p=p03(—ol 1-1"_1M2<Y3_) (104)
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On the other hand, by virtue of equations (5) and (33) the following
equation holds

ﬂ= 1+ 138,°(0) + zmsk”(o) + oo (105)

o

g(0)

8o
and (105), respectively, in the right-hand side of equation (104) we obtain
after elementary transformations the desired formula for the calculation
of the pressure on the contour K

Substituting the expressions for v and obtained in formulaes (101)

P =P+ g alBk(x) + agﬁkg(x) + a33k5(x) + ahﬁkl*(x) + aldﬁkB(O) +

epaPit(0) + azgBo (0)By(x) + amﬂkz’(o)ﬁk'(O)XJ + €5 (106)

where

213

aid = -2(b3 - b3') - _——k(k - l)M2

K41 4o -k 1 3-k o 3k-5
> MR - 1) 2<-3+TM g2

4o 21
-2(by - by') + —2(bs - bz') - 4

o1 k(k ~ 1)M°

824

- o2 10 - 2 _ 13
M’*(ME-l)“5<_k"'l+5+31; 2 2 4 210 3k-l8-6k K3

- ) 2 .3
9 - TP+ 2 5 34k 43k kM8>
16 32
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ko, 2lzby
= (b3 - bz') [M3by - Zby - —2 3
e3q = (b3 - B3') (Aby - 2oy - —= |+
2
- M6 M2 - 1 -5f_ k+1 T+ 2k - Bk
( ) g T o
-~ 2 . - - T2 3
4 + 3k + 6k k3 . 3 - Tk - Tk= + 3k v6
2l 96
3eq -
ahg = - T(b5 - bj' + H1035bl)

6]

2 '
Ue+ D)7y - 1)—5<}1 p2kye 35 M%)
16 2 8

For x = 0 the formula (106) takes the form

P =g + q_[alﬁk(o) + 228, 2(0) + az'B3(0) + au'sk”(OZI +e5  (107)

where az' = 8z + 814, 84" = &) + agy + 8zq:

Formule (107) may be used for the calculation of the pressure on a
flat plate which 1s inclined at an angle sk(o) to the undisturbed flow.

In order to single out of the right-hand side of equation (106) those
terms which depend exclusively on the presence of the shock in front of
the contour K, we add to the contour K under consideration an arec 0'0
of finite length in such a manner that this arc is tengent to K at the
point O and is parallel to the x-axis at O' (fig. 8). Since the flow
around such an additional contour is accomplished without the appearance
of shocks (we suppose that the angle between the directlion of flow and the
x-axis and the derivative of this angle with respect to x are both
infinitely small), formula (29) mey be employed in the calculetion of the
pressure on this contour. Comparing formulas (29) and (106) and denoting
by MPgiogg the pressure resultbting from the presence of the shock front,

we obtain
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LPgtoss = Q[%ldﬁk?(o) + apghit(0) + 2z 3(0)By(x) +
ahd_sf(o)ﬂk'(o)x] ¥ €5 (108)

We may, in turn single out of the expression for Apgiogg the term

depending solely on the vorticlty caused by the presence of the shock.
In order to do thls we add to the contour K(OCE) a straight-line segment

tangent at the point O (segment 0'0 in fig. 9). With the contour 0'0Cso
a shock is formed, but the shock line 0'Cy is straight so that vortex
formstion is absent. Calculating the pressure on the portion OC2 of the

contour 0'0Cp, we obtain

P = P + q|aBr(x) + a23k2(x) + a5ﬁk3(x) + ahsk%(x) +
a1 4Bio(0) + agdsk“(O) + aﬁﬁkj(o)ﬁk(x)] + 5 (109)

Comparing formulas (106) and (109) and denoting by 4p,.; the pressure
due to vortex formation caused by the shock, we obtain

Dopor = G8LaPro (0)By' (0)x + e5 (110)

PART III

We now apply the results obtained to the calculation of the lifting
force and head resistance of a flat wing with sharp front and rear edges
placed in a supersonic stream having constant hydrodynemical elements.

We place the origin O at the front edge of the wing and arrange the
coordinate system so that the positive x-axls corresponds to the direction
of the velocity of the undisturbed flow and measure angles in the manner
used heretofore. Segment O0Co comnecting the front and rear edges (fig. 10)
will be called the chord of the wing as in the theory of wihgs. The length
of this curve will be denoted by T and the angle i1t mekes with the x-axis

by B-.
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The form of the wings we are investigating is detfined by a palr of
contours like that investigated In the preceding sectlon, possessing a
pair of common points 0, Co. Comparing ordinates of polnts on these

contours having the same absclssa, we call the upper contour K; that

contour of which every point on the ordinate is greater than the corre-
sponding point on the ordinate of the other contour, which we cell the
lower contour Kj3.  The function ﬁk(x) for the upper contour we denote

by Byyu(x) and for the lower by Byi(x).

We choose an arbitrary point A on the chord of the wing and denote
the distance OA by +t. Through A we pass & straight line perpendiculsar
to the chord of the wing and denote by A, and A3, respectively, the

intersections of this stralight line with the upper and lower contours.
With the point Ay we assoclate a unit tangent vector t, and at the point A;

a unit tangent vector t3. The vectors t,; and t; will be directed in such

a manner that their projectlons on the directlon 0Co are positive. We
denote by By and B, respectlvely, the angles these vectors make with

the vector 553. Clearly By, B3 may be regerded as functions of 1.
We denote by Byp &nd B,q the values of B, and B3 at the point O

and the values of the derivatives of B, and B3 wlth respect to %
at the point O by Byo' end By5'.

The absclissa x of A, may be calculated from the formula
t nt
X=1%tcos B - gin EJ/‘ tan B,dt (111)
o
and that of the point A; from the formula
_ _rt
x=1%cos B - sin Bd[‘ tan Bdt (112)
0

The value of the functions By, (x) at the point A, is determined by the
relation

Bru(x) = B + By - (113)
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and the value of the function By3(x) at the point A; by the relation
Br1(x) = B + By | (11k4)

Moreover we have the relations

T

f tan Buydt = O (115)
0
T

f ten Bydt = O (116)
0

We assume thet B and also B, and B3 and other derivatives with

respect to t are infinitesimal quentities. From equations (115) and
(116) we easily obtain

T
[T
0
-
[T
0

Proceeding now to the calculation of the 1lifting force and head resistance
of the wing under consideration, we remark that on the top side of the
wing a shock appears when and only when

T
1
-3 fo Budt + €5 (127)

T
- = By7dt + € (118)
5 Jo ! >

B+ By >0 (119)

and at the bottom side when and only when

B+Byo<0O (120)
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We introduce the quantities aj,,, apy, 8%y, &y, defined as follows

8lu = 814
8oy = 824 _
if B+By>0¢ (121)
8'311 = 8.5d
By = 8hg )
81y, = 8ny = &5u = alm = 0 if E + BZO <0 (122)
In an analogous wey we define the quantities 8175 8035 a3z 3 am
3
a11 = a9
821 = 8pg _
if B+Byg<O0 p (123)
a§1 = a3d_ .
8y = 84 ' )

Denoting by Py the pressure on the upper contour K, and by Py
the pressure on the lower contour K; we easily obtain, with the help of
formulas (106), (121), (122), (123), (124)

P, =DPo *+a alﬁku(x) + a.gﬁk_uz(x) + a3ﬁku3(x) + &L,.Bkul"(x) +

aluBk1J.3(o) + E-guﬁkul[.(o) + ajuﬁkuB(O)Bku(X) + a‘huBkui(o)Bku'(o)x] + €g
(125)
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P = Po + QEalﬁkz(x) + aghy2(x) - aspyyd(x) + ayBt(x) -
8128115(0) + B H(0) + 2538, 3(0)B,, (%) + 2,8, 3(0)Byy " (O)x] + €5

(126)

-
Iet P denote the resultant vector of the hydrodynemicel force
acting on a unit length of the wing under consideration. We have then

P = Cﬁpzds (127)

where ;? denotes a unit vector normal to the contour of the wing and
directed inwards.

We introduce the dimensionless coefficient of the 1lifting force Cy
and the dimensionless coefficient of head resistance Cx. Thesge coeffi-

cients are defined by the formulas

Cy = E% (128)
P
Cx = q—; (129)

_)
where Py and Py, denote the proJjections of the vector P on the
x- and y-axes, respectively. From formulas (127), (128), (129) we have
' 1 1
Cy = - e ppdx + ik-\/ﬁ pydx (130)
aT Yo af Jo
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1 1
1 1

Cp = + — p,, tan By (x)dx - = Jf p, tan By (x)ax  (131)

X T ° u ku qT o 1 ki

where 1 denotes the abscissa of the point Cz2. With the aid of formu-

las (111), (112), (113), (114), (117), (118), (125), (126), (130),
and (131) after a few elementary transformatlons we obtain

Gy = Cy1 + Cy2 + Cy3 + Cyh + €5 " - (132)
where | |
Cyy = -281f

Cys = (ay - 2a3)p° - a1y(B + Buo)5 - 8B + B10)° +

T T
L _ 202\E 2 Z)dt Y e N f L 5)6.’0
T(al 383)B fo <Bu + B \3 az o (Bu 1

- 4 . :
Cyh = ~8py(B + Buwo)  + s21(B + Br0) " - az (B + Buo)” +

as1B (8 + 1007 - F aku(f + Buo)Buo’ + 3 2 (B + B10) B0’ +

T - T
15 -2 2 .2 1 , )
E(‘é‘ ap - 69'14)5 J; (By~ - B17)at + T@’ as - halgﬂ \/; (Bu3 - ppl)at

'_3%1__ fT (Buh - 5324)‘3-'[3
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Cx = Cxo + Cx3 + Cyl + €5 (133)
where
aq T

Cyo = 2al|§2 = . <Bu2 + [312>dt

5acf T ay T
Cy3 = T2 fo (Buz - [312>d:t ¥ = fo (Bu3 - ;323)@

a

o = (225 - "+ 20,58 + 00 # 03756 + 2200

T
i 1 Jf b P
TGTI’ 5> o<Bu +BY’>

Iet us consider & numerical example.
Suppose

k = 1.405, M= 1.5, po = 1.033 kg/cm? (13k)

Then
2

PrkM
q = =— = 1.653 kg/on?

ey = 22 - 1)"M2 2 1. 189

ap = (M2 - 1)"3(2 - 22 + 1.2034%) = 2.296

az = (2 - 1)-T/2(1.335 - 22 + h.ooadt - 1815 +
0.400848) = 3.082

ay = (M2 - 1)75(0.6667 - 0.666TM2 + 5.6164% - 3.8210 +
2.96M8 - 0.7840M¥0 + 0.07992412) = 8,290

r (135)

(Equations continued on next page).
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~

ajg = L1.203M*(M2 - 1)'7/2(-0.5355 + 0.2658M2 - 0.0327IM4) = 0.2766

apg = MH(M2 - 1)72(-1.203 + 1.517M2 - o.61+5:1M4 + 0.04556M0 +
0.04853M8) = 0.L4L48 ><§2§c)

asg = M2 - 1)75(-0.4008 - 0.0025M2 + 0.386a* - 0.1286) = 0.3518

ang = 0.3615M8(M2 - 1)72(-1 + 0.7973M2 - 0.09813*) = 0.9035

Let us take as the functions By, By

Bu = "25 + &Et
T (136)
By =0

Moreover we assume that

B <O (137)

The form and position of the profile of the wing, determined by equa-
tions (136) and condition (137), is shown in figure 11. It is easily
seen that the straight line 518, drawn perpendiculer to the wing through

its mid point is the axis of symmetry of the profile under consideration.
From equations (136) and condition (137) we have

B+ Bup= -B >0

(138)

=8< 0

©

+

w
o
o
l
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Consequently,

a1y = 813 = 81q = 0.2766

an, ap] = 8n3 = 0.4448

B3y = 8z = 8z = 0.3318

By = &Y = akg = 0.9035

o~

Using formilas (132), (133), (135), (136), end (139) we obtein
Gy = -2833 -.13ta.2;32+<.;£a1 ; 6a5)55+

<£:-a2-?5—6-a)++2a3d+2ahd>éu+e5

= -3.5T88 - 3.061’5‘2 - 1#.3253 - 82.75ELP oo

10 __=2 =3 a1 66 =4
Cx—--—3—a.lf3 +’+&23 +<E+-§-&3>ﬁ +€5

5.965{32 + 9.184[53 + 11-0.864 .o

]

let

|
]
W]

T = 100 cm

39

(139)

(140)

(143)
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Then
Cy = 0.2936
. (142)
Cx = 0.04168
Knowing Cy, Cx, T, and q, we easlly obtain
Py = qICy = U47.9 kg/em
(1k3)
Py = qTCx = 6.8l kg/cm

STMMARY

In. the present work the problem of a flow of stream of ldesl gas
around a thin wing at small angles of attack 1s investigated, this stream
being supposed to be two-dimensional, statlonary, supersonlc and deprived
of heat-conduction.

In the initlal part of the work, the probliem 1s stated, and the well-
known results obtained by Ackeret, Prandtl, and Busemann are clted. These
results, as known, are obtained on the basis of the potential supersonic
streams theory, which is founded on the exlstence of integrable combina-
tions of characteristics of differentisl equations concerning this problem,
and in which some pecullsrities of the dynamical conditions on the line of
the shock wave are utllized.

In the second part the approximste solution of the problem is given
with an allowance for vortex-formation caused by the change of entropy
along the shock wave, when receding from the leading edge of the wing,
near which this shock wave 1s formed. For thils purpose differential
equations of characteristics non admitting integrable combinations are
to be dealt with. The solution is obtained by means of a speclal method,
which enables us to find the gpproximate integreble combinations of dif-
ferential equations of the characteristics. The obtained combinations
let us receive the approximete formula of pressure in any point of the
contour of the wing investigated. From this formula the term 1ls easily
segregeted depending exclusively on the vortex formulation, caused by
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the change of entropy along the shock wave. The characteristic dis-
tinction of this term of the obtained formula of pressure from the other
ones, is that i1t includes the curvature of the wing contour at the leading
edge and the distance from this edge up to the element of the wing for
which the pressure 1is calculated.

In the third part of the work the expressions for 1ift and drag
coefficients of the wing are given, on the base of the formula of pres-
sure obtained above. In conclusion a numericel example is sbudied.

Transleted by R. Shaw
Institute of Mathematical Sclences
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Figure 2(b).
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